Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(10): 11489-11503, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073827

RESUMO

There is a pressing need for high-rate cycling and cost-effective stationary energy storage systems in concomitance with the fast development of solar, wind, and other types of renewable sources of energy. Aqueous rechargeable Ca-ion batteries have the potential to meet the growing demands of stationary energy storage devices because they are abundant and safe; they can also be manufactured at a low-cost and have a higher volumetric capacity. In this study, we have demonstrated a low-cost, safe, aqueous Ca-ion battery that is based on a low potential, lower specific weight, in situ polymerized polyaniline as an anode, and a high redox-potential open-framework structured potassium copper hexacyanoferrate as a cathode. The charge-discharge mechanism of this battery includes doping/dedoping of NO3- at the anode, and intercalation and deintercalation of Ca-ion at the cathode. This Ca-ion battery works successfully in a 2.5 M Ca(NO3)2 aqueous electrolyte that exhibits 70 Wh kg-1 specific energy at 250 W kg-1 and even maintains a high energy density of 53 Wh kg-1 at a higher rate of 950 W kg-1; this indicates a good rate capability (calculation based on anode active mass). At 0.8 A g-1, the battery provides an average specific capacity of 130 mA h g-1, exhibiting high Coulombic efficiency (∼96%), with 95% capacity retention of over 200 cycles across its life span, which is a new achievement in the electrochemical performance of aqueous Ca-ion batteries. Furthermore, the calcium-ion storage mechanism is investigated using high-end X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Thus, this significant electrochemical performance of the anode and the cathode renders the battery a promising candidate in grid-scale storage applications.

2.
Sci Rep ; 9(1): 3196, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824776

RESUMO

Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a  BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining  13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, independent of  the  main effect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.


Assuntos
Técnicas de Genotipagem , Proteínas de Grãos/metabolismo , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Meio Ambiente , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Ligação Genética , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
3.
ACS Appl Mater Interfaces ; 7(31): 17044-53, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26189927

RESUMO

Sodium-ion battery (NIB) cathode performance based on ammonium vanadate is demonstrated here as having high capacity, long cycle life and good rate capability. The simple preparation process and morphology study enable us to explore this electrode as suitable NIB cathode. Furthermore, density functional theory (DFT) calculation is envisioned for the NH4V4O10 cathode, and three possible sodium arrangements in the structure are depicted for the first time. Relevant NIB-related properties such as average voltage, lattice constants, and atomic coordinates have been derived, and the estimated values are in good agreement with the current experimental values. A screening study shows ammonium vanadate electrodes prepared on carbon coat onto Al-current collector exhibits a better electrochemical performance toward sodium, with a sustained reversible capacity and outstanding rate capability. With the current cathode with nanobelt morphology, a reversible capacity of 190 mAh g(-1) is attained at a charging rate of 200 mA g(-1), and a stable capacity of above 120 mAh g(-1) is retained for an extended 50 cycles tested at 1000 mA g(-1) without the addition of any expensive electrolyte additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...